If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-12q-96=0
a = 1; b = -12; c = -96;
Δ = b2-4ac
Δ = -122-4·1·(-96)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{33}}{2*1}=\frac{12-4\sqrt{33}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{33}}{2*1}=\frac{12+4\sqrt{33}}{2} $
| 5/x+4=12 | | 3x^2-4x+71=0 | | (7x+3)^2-(x-2)^2=0 | | -4(x+6)-3=-6(×-2)-9 | | 2^n=1000 | | 8p-2=9p-7 | | 4x-8=5x-23 | | x(2x-1)=3x | | x(2x1)=3x | | -5/8x=9/10 | | h^2−9h−17=0 | | 4s+2736-6s=2174 | | x+6/9=2/3x | | 115=(1/2)(5x-2)(2(115/(5x-2))) | | x2-4=0 | | 8x^2+x-20=2x^2+8x | | (5x/7)+5=30 | | 2/3t-18=1/3t-20 | | (4y+2)^2=4 | | (5x/3)+5=30 | | 5/8x=-9/10 | | m∠1+m∠2(4)=85 | | 5(x+3)=9(x-13) | | 3(x-4)/4-x=1-x/6 | | 5x17=29 | | 12x−35=25x+12 | | 4s+4872-6s=2200 | | (2x/3)+1=3 | | (x/7)+9=15 | | 5^x+25=100 | | 800(2^2t)=1 | | (x/5)+1=7 |